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Abstract 

The effect of granularity in powder X-ray diffraction 
is reviewed, and the shortcomings of previously 
developed models in explaining this effect are 
described. A new physical model encompassing all 
aspects of this phenomenon is proposed. Mathemati- 
cal formulae based on the model are derived, and 
their limit cases are discussed. Values of the theoreti- 
cal intensities from the model are compared with 
results from a specially designed experiment. 

Introduction 

X-ray diffracted intensities from actual powder 
samples can be greatly affected compared with the 
ideal case if the fineness condition d(I/X -/zl) < 0.01 
is not fulfilled (Zevin & Zavyalova, 1974), where d 
is the mean size, /x is the absorption coefficient of 
the diffracting phase, and /X is the absorption 
coefficient of the matrix. 

It is not always possible to reduce the particle size 
enough to avoid granularity effects in the diffracted 
intensities, since many crystalline materials will not 
survive severe mechanical treatment. In such cases, 
it is more meaningful in quantitative analysis and 
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structure determination to make mathematical correc- 
tions. 

The effect of granularity has been studied from the 
beginnings of X-ray diffractometry. Brindley (1945) 
gave the first approximation to the problem. His 
theory, though oversimplified, successfully explained 
one fundamental aspect of the effect. Wilchinsky 
(1951) gave a second model which explained the 
effects of porosity and grain and particle size, 
although Harrison & Paskin (1964) stated that his 
statistical treatment of the powder was not rigorous. 

These latter authors stated the question from a new 
point of view. They proposed to explain the effect of 
granularity in the angular region near 90 ° . More 
recently, Shimazu (1967) and Shimazu & Hosoya 
(1968) returned to Brindley's ideas, considering new 
aspects not taken into account by him. 

None of these models explains all facets of the 
effect, which, in reality, is a set of effects very closely 
related to one another (Zevin & Zavyalova, 1974), 
and no further directly related work was performed 
in continuance of the cited works. 

The effects of granularity depend on the 
heterogeneity of crystalline powders. An expression 
for the intensity from ideally homogeneous crystalline 
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770 EFFECT OF GRANULARITY IN POWDER DIFFRACTION 

powders was derived by Alexander & Klug (1948). 
However, in actual powders the following 
heterogeneities exist and must be taken into account: 
(a) heterogeneity of the diffracting phase (distribu- 
tion of crystals); (b) heterogeneity of the crystalline 
material (presence of cavities or holes); (c) 
heterogeneity of composition (presence of several 
phases in unequal concentrations); (d) heterogeneity 
of the shape and size of particles; and (e) 
heterogeneity of the distribution of holes. We aim in 
this work to state a general theory which takes into 
account the points just listed, and successfully 
explains the experimental facts. 

Statement of the model 

Let a powder be composed of crystals of N different 
phases, randomly oriented and mixed. Let it be 
pressed like a porous block and located on the focus- 
ing plane of a diffractometer. 

The incident X-ray beam can be considered to be 
composed of individual rays. Along the path of any 
one of them, it goes through or reflects from different 
particles and holes alternately, and does not interact 
with several at the same time. This is derived from 
the shortness of the wavelength compared with the 
particle size. 

The model of equivalent spheres consists of the 
transmission of an individual ray going through the 
centres of a row of crystalline spheres and holes, with 
diameters equal to the path length of X-rays within 
the actual particles and holes (Fig. 1). 

Let fo, f ~ , . . .  ,fN be the distribution functions of 
the shapes and sizes of particles and holes of the 
mixed N phases; let vt, v 2 , . . . ,  vN be the volume 
fractions of the different crystalline phases (Y~ vi = 1 - 
Vo); and let Vo be the volume fraction of holes in the 
powder. As a first approximation we shall consider 
Vo = constant, but later the existence of a gradient of 
Vo in the vertical direction will be assumed. 

The distribution functions f o , . . . ,  fN can be found 
either experimentally or theoretically. For example, 
the distribution function of rod-like particles with 
thickness d and length L is, in a first approxi- 
mation, f ( D ) = [ D l o g e ( L / d ) ]  -~, and f ( D ) =  
k(R, d)[1 - ( d / 0 ) 2 ]  1/2 for plate-like particles, where 

(a) (b) 

Fig. 1. Path of a ray through a crystalline powder. (a) Actual 
particles. (b) Model of equivalent spheres. Open circles for the 
particles and black dots for the holes denote location and size. 

R is the diameter of the plates and k ( R , d )  is a 
normalizing parameter. 

Derivation of the theoretical formulae 

It is known (Guinier, 1956) that the diffracted 
intensity below the Bragg angle by a volume element 
dv is 

d I =  IoQdv,  (1) 

where I0 is the incident intensity and Q is the diffract- 
ing power. When extinction effects are present, we 
can write the alternative formula 

d l =  IoQ' dv, (2) 

where Q' contains correction terms for primary and 
secondary extinction. 

Supposing that a ray goes through a set of layers 
arranged parallel to the surface of the powder block, 
we can find the contribution to the intensity by each 
layer of particles and integrate to give the total 
intensity. This contribution is 

dI,  = IoQ'p,v~(1 - Vo)rA dv, (3) 

where Pl is the probability of a particle of (diffracting) 
phase 1 being in the diffracting orientation, v~ is the 
probability that a particle struck by the ray is of phase 
1, 1-Vo is the probability of finding a hole at the 
point of incidence, z is the coefficient of self- 
absorption (Shimazu, 1967) and A is the absorption 
factor. 

Let us now calculate the absorption factor. For this 
we shall develop a scheme analogous to that of Berry, 
Furuta & Rhodes (1969) for studying the effect in the 
fluorescent case. 

We define the X-ray absorption path in a 
heterogeneous material, by analogy with the optical 
path, as 

2tl 

L,, = E mDj, (4) 
j = l  

where/xj is the linear weakening coefficient of the j th  
particle and Dj is the diameter of the sphere 
equivalent to it. The sum extends from the surface to 
the nth layer and again to the surface along the 
penetrating and outgoing paths of the rays. 

Grouping absorption paths by particles of the same 
kind, we obtain 

N nk 

i n =  ~, Y'. nklZkDk.j, (5) 
k = l  j = l  

where the index k refers to phase k. 
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However, taking into account our knowledge about 
the distribution of particle sizes, we obtain 

where 

N co 

L,, = Z J nklXJ'kDk dD 
k = l O  

N 

= Y'. n~t~kOk (6) 
k = l  

co 

Ok = ~ fkDk dD. (7) 
o 

Now let Vk be the probability (volume fraction) 
that a particle is of type k. From the binomial distribu- 
tion we know the probability that nk of a set of 2n 
particles are of type k, and hence we can estimate the 
magnitude of the absorption path as 

N 2n 

Lo2. = E E 2,C, kvT, k(1--Vk)2"-"knkgkDk. (8) 
k = l  n k = 0  

However, neither ~'~k nor O k depend on n k. The 
second sum is the mean of n k for the binomial distri- 
bution 2nVk .  Hence 

N 

L,,2. = ~, 2nVktXkDk, (9) 
k = l  

and the absorption factor for a ray reflecting from 
the (n + 1)th layer is 

exp(--k~12nl~kl.l.kOk ).  (10) 

The absorption factor in the case of a homogeneous 
distribution of holes is therefore 

~ exp --k=~ A =  
n = l  

= [exp (2 2 Vk~kOk) -- 1] -1. (12) 

However, according to the model, in which the ray 
always goes through the centres of equivalent spheres, 
dv = D dS, where dS is an element of area of the 
cross section of the beam, and D is a variable that 
expresses the diameter of the particles of any type. 

The total intensity is, from (3) and (12), 

c o  

fl 
11 = D f x p  (2 Y. IXkVkDk) -- 1 

S o 

IoQ' pl v l ( 1 -  Vo)'rSD 
exp (2 Y'. Vk~kOk) -- 1 

dS d D  

(13) 

where 
co 

D =  ~ D f  dD, (14) 
o 

f is the overall size distribution and S is the total 
cross section of the beam. 

For a better understanding of the physical sense 
of the correction with respect to the homogeneous 
case we can express (13) as 

where 

I1 = IoQ'plvl T"SFc/212 (15) 

2120(1 -  v0) 
F~ =exp  (2 Y'. VktZkDk)-- 1" (16) 

The factor Fc  is the correction for the effects of 
granula_rity. It can be noticed immediately that in the 
limit 12D ~ 0 and v0 = 0 then Fo = 1 and (15) remains 
in the form derived by Alexander & Klug (1948) for 
the homogeneous case, apart from the correction ~-, 
which also approaches unity when/z~Ol vanishes. 

Also, it is easy to show for minute particles in a 
monophasic powder that 

F~ "--( 1 - tzD/2)(1 - Vo), (17) 

which partially explains the experimental behaviour 
found by Cooper (1965) and Weiss (1966), 

F~= 1 - ( t z D / Z ) ( 1 - V o )  2. (18) 

That is, our model does not explain quantitatively 
the effect of porosity according to Cooper and Weiss, 
but it rigorously describes the effect of particle size 
in the stated case. 

On the basis of such a model an expression is 
derived for the a exponent in the semi-empirical 
equation of direct X-ray phase analysis (Leroux, 
Lennox & Kay, 1953): 

I1 = I°C1(tz */12") '~ (19) 

where I ° and I1 are the intensities of a reflection of 
the diffracting phase (pure and mixed, respectively), 
C1 is the weight fraction of the diffracting phase, and 
/z* and 12" are the mass absorption coefficients for 
the diffracting phase and whole sample respectively. 

From (15) it follows that 

I,I 17 = v,( Fol F°) tzl112 
=C,(FolF°o)~*112 *, (2O) 

where/x* = tz~lpl and t2"= 121p. Here pl and p are 
the densities of the diffracting phase and whole 
sample, respectively. Then, from (19) and (20), it 
follows that 

a = l o g [ ( F ~ / F ° ) r ] / l o g r  (21) 

where r =/z*/12". 

Case with a gradient of holes 

The development of the theory as far as relation (8) 
does not require an analysis of the hole distribution 
through the porous block. However, in an actual 
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powder specimen variations could occur in the hole 
density even if some experimental caution were 
exercised. 

Let us suppose that in the porous block a constant 
positive gradient of the concentration of holes exists 
in the direction perpendicular to the block surface; 
then 

V0(X) = Vminq-gx for O<--X<--(Vmax--l)min)/g 
(22) 

Vo(X)=l)max forx>(Vmax--Vmin)/g. 
On the other hand, we can put (8) into the form 

L,,2, = na (23) 

where 
N 

a = ~, 2VktZkDk. (24) 
k = l  

The differential absorption of a sheet lying at depth 
x is 

d a ( x )  = (1 - Vmin-- gX) d[exp ( - n a ) ]  

forO<_x<_Av/g 

= (1 - Vmax) d[exp ( - n a ) ]  for x > av/g 
(25) 

where 

A/)  = V m a x -  /3min. (26) 

In this case it is more convenient to approach the 
problem in differential form. Thus the transformation 
nD= x/s in  0 shown in Fig. 2 is to be performed, 
where 

N 

1~= Y, Vkff)k. (27) 
k = l  

By integration of (27), 

A = (1 - Vmin)eXp (--ha) 
A v l g  

- g  ~ x d [ e x p ( - x a / s i n  0)] 
o 

= (1.- Vmax) exp (-na) 

for 0 <- x <- Av/g 

for x > Av/ g. 
(28) 

It is possible to find a value Vo for which 

A = (1 - ~7o) exp (-na) 
Zmax 

+glS(sinO/a) ~ Z e x p ( - Z )  dZ 
o 

(29) 

6 

Fig. 2. Geometrical scheme for illustrating the model of  equivalent 
spheres with a gradient of hole concentration. 

where 

Zmax = ( Av/ g)a/15 sin O. (30) 

The first term of the sum in (29) leads to a result 
similar to (13) with 27o instead of Vo. 

The integral in (29) gives the following result: 

loQ'plvl rS ~ 2/2gf) sin 0 
11 - 2 /2  ( F c  a 

aAv o vo)(l  o)+1]} 
(31) 

Letting Av/g>> if)sin O/a in (31), we obtain 

IoQ'plvlrS[ 2/2g/5 sin 0] (32) 
11 - 2/2 F ~  a ' 

and letting Av/g~ D sin O/a, we obtain 

IoQ'plVlZS[ 4/2g/5 sin 0] (33) 
I1 "- 2/2 F~ - a " 

Therefore a single solution can be considered with 

i loQ'plv, rS[ 2Kg/2g/) sin 0] (34) 
- 2/2 Fc a 

where K~ is a parameter between 1 and 2 which 
depends on the value of Zmax in (30). 

It should be noted in (34) that the effect of the 
existence of a gradient of hole concentration is 
revealed in the form of an additive term to the granu- 
larity factor. This term will be bigger in absolute value 
when g grows and when the incidence of X-rays 
becomes more nearly perpendicular. 

Determination or even experimental setting of g 
could be extremely difficult. Therefore, expression 
(34) has "2_ merely theoretical importance. It illustrates 
the effects on intensity if some experimental precau- 
tions are not taken for correcting or minimizing the 
cause of this behaviour. 

E x p e r i m e n t a l  

For a practical test of the model an experiment was 
designed in which the diffracted intensities were 
measured under rigorously controlled conditions and 
then compared with the theoretically calculated 
intensities, given the same conditions. 

We prepared mixtures of pure quartz with two 
different grain sizes: 20_< d -< 40 i~m and 40 < d <- 
63 lxm with graphite in eight weight fractions between 
0.1 and 0.8. The grain size of graphite was 2 0 - d  <- 
40 Ixm. 

The mixes were run in a DRON 2,0 diffractometer 
with Bragg-Brentano focusing and a BSV-23(Cu) 
tube at 36 kV, 20 mA. Linear slits of 1, 8, 0.25 and 
6 mm, and a Soller slit of 2.5 ° were used. 
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Selected peaks were scanned point by point over 
the 20-22°(20) and 45-47°(20) intervals respec- 
tively,with 40 steps of 0.05 ° length, each for 4 s. 

The powder specimens were mounted in a cuvette 
of quartz and vinyl plastics with rear filling to a 
constant volume in order to avoid porosity gradients 
on the diffracting surface. The mixtures were run in 
a completely randomized order to avoid trends in the 
results. The theoretical calculations were performed 
on a NEC 9801 computer with a Basic program. 

Results and discussion 

Theoretical curves of c~ vs the logarithm of the absorp- 
tion rate are plotted in Fig. 3 for six sets of quartz 
mixtures. From observation of these curves it is pos- 
sible to make the following qualitative conclusions: 

(a) The a exponent tends to be constant in a range 
around r = 1. 

(b) The a values decrease with increase of particle 
size. 

These two theoretically-derived behaviours have 
already been reported in the literature; they form the 
basis for the development of diffraction-absorption 
methods. 

However, it is noticed from Fig. 3 that there is a 
discontinuity at r = 1. If the a exponent is to have a 
real physical sense, then curves (a), (c) and (e) should 
coincide with curves (b), (d) and ( f )  at a common 
point for r = 1. Hence, a is not a physical constant 
or parameter, but a simplification aid. 

On the other hand, the granularity coefficient, F~, 
does have a well defined physical meaning as the 
weakness of the diffracted intensity generated by the 
heterogeneity of crystalline powders. The extremum 
found for ~ VktZkDk = 0 in (16) is not a discontinuity, 
but a limit case perfectly understandable from the 
physical point of view, in which the diffracting 

" ~ )  (c) 
(b) 

,2 

_(e) 

-1 0 1 

log • 

Fig. 3. Variation of microabsorption exponent with log r for (a) 
quartz (30 i~m)-Fe203, (b) quartz (51-5 i~m)-Fe203, (c) quartz 
(30 ~m)-BeO, (d) quartz (51.5 ixm)-BeO, (e) quartz (30 p.m)- 
graphite, ( f )  quartz (51.5 i~m)-graphite. 

properties of the heterogeneous powders approach 
those of the ideal homogeneous ones when the par- 
ticle sizes are diminished. 

Fig. 4 illustrates the behaviour of formula (16) for 
quartz mixed with Fe203, BeO and graphite, showing 
continuity along all curves. It may be noticed, too, 
how the addition of low-absorbing phases enhances 
the diffraction intensity and vice versa, as is already 
known from the earliest works in quantitative 
analysis. 

For a quantitative test of the proposed model, 
theoretical curves of log [(11/I °) C1] {or 
log[(F~/F°~)r]} vs log r and the corresponding 
experimental values were plotted. 

Owing to the high dispersion of the experimental 
results it was not possible to distinguish the values 
for the intensities of the two different grain sizes and 
the two angular regions. We then decided to construct 
a single data set by taking the mean of both sets of 
values. Finer and more extensive experiments would 
be necessary to study the contribution of these effects 
separately. 

The theoretical results for quartz-graphite mixtures 
are plotted in Fig. 5 for two different particle sizes 
of quartz. It can be seen that the differences between 
curves (a) and (b) are not too large, and therefore a 
single curve somewhere between them could be con- 
sidered without much disadvantage. The experi- 
mental results for the same mixtures, obtained by the 
method described above, are also plotted. The coin- 
cidence of theoretical curves with experimental points 
is rather good for low and medium concentrations, 
but poor at high graphite concentrations. This lack 
of fit can be explained by taking into account the fact 
that theoretical computations from (16) were per- 

& 

/ ( e )  
o.~ ~ / ( c 1  

0 - 8  

.(d) 
0.7 ..*_.555"(f1 

0-6 

0.5 

0 . 4  

0.3 

o2 

0.1 

1 - C,  

0.10.20.30.40.50.6.0.70.80.91.0 

Fig. 4. Variation of granularity factor with 1 - Ct for (a) quartz 
(30~m)-Fe203, (b) quartz (51-5~m)-Fe203, (c) quartz 
(30 ~m)-BeO, (d) quartz (51.5 ~m)-BeO, (e) quartz (30 ~m)- 
graphite and (f) quartz (51.5 ixm)-graphite. 
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formed on the basis of particle diameters estimated 
by screening. This method could be rather good for 
quasi-isometric particles but for the layer-like 
graphite particles a fourfold longer diameter is to be 
expected by comparison with the mean particle 
diameter defined by (7). Therefore, at high graphite 
concentrations, when layer-like particles become pre- 
dominant, curves (a) and (b) on Fig. 5 should be 

I~ CI) scale, and 0.2-0.3 units lower on the log ( l l /  o 
then would show a better fit to the experimental 
points. This demonstrates how the diffracted 
intensities are not only affected by the particle sizes 

'°g'"/'°'c'l /~)/ i (a) 

. . . .  , , , , , Ijgo f 

1 

Fig. 5. Diffracted intensities for quartz, computed from the model 
for (a) quartz (30~m)-graphite and (b) quartz (51.5 ~m)- 
graphite. Open circles denote experimental points. 

but also by their shapes, and how the theory reflects 
their influence too. 

According to the experimental results for graphite, 
the model is qualitatively and also quantitatively con- 
sistent within certain limits. Also, as was demon- 
strated in the derivation of the theoretical formulae, 
this model has as limiting cases the ideal case of 
Alexander & Klug (1948) and the empirical 
expressions of Cooper (1965) and Weiss (1966). 

For these reasons we estimate that the stated model 
adequately describes the granularity effects in their 
most general form. 
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Abstract  

The polychromatic Laue method was developed for 
application in flash X-ray diffraction studies; it can 
also serve as a valuable tool for fast data acquisition 
with conventional X-ray and synchrotron sources. 
The present method was developed with a sealed 
X-ray tube (Mo anode, 45 kV, 20 mA) and a crystal 
of known structure for calibration of the source spec- 
trum. The resulting experimental energy distribution 
of the source has been successfully approximated in 

* Present address: The Weizmann Institute Computer Center, 
Rehovot 76100, Israel. 
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the range 0.45-1.9A, by an analytical expression 
based on a theoretical curve for white radiation. The 
problem of coincidence of several harmonics in a 
single diffraction spot has been partially solved by 
the multiple-film technique. The efficiency of the 
method was tested on a crystal of (2-tert-butyloxy- 
carbonyl) - 9 - oxo - 6-oxa-l-azabicyclo[5.2.0]nonane, 
which was also investigated by means of a conven- 
tional four-circle X-ray diffractometer. The com- 
parison of about 500 structure factors derived by the 
two methods yielded an R factor of 0-065. Data 
acquisition by the Laue method is about two orders 
of magnitude faster. 
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